11.5.1.4. astroML.time_series.search_frequencies¶

astroML.time_series.
search_frequencies
(t, y, dy, LS_func=<function lomb_scargle>, LS_kwargs=None, initial_guess=25, limit_fractions=[0.04, 0.3, 0.9, 0.99], n_eval=10000, n_retry=5, n_save=50)[source]¶ Utility Routine to find the best frequencies
To find the best frequency with a LombScargle periodogram requires searching a large range of frequencies at a very fine resolution. This is an iterative routine that searches progressively finer grids to narrowin on the best result.
 Parameters
 t: array_like
observed times
 y: array_like
observed fluxes or magnitudes
 dy: array_like
observed errors on y
 Returns
 omega_top, power_top: ndarrays
The saved values of omega and power. These will have size 1 + n_save * (1 + n_retry * len(limit_fractions)) as long as n_save > n_retry
 Other Parameters
 LS_funcfunction
Function used to perform LombScargle periodogram. The call signature should be LS_func(t, y, dy, omega, **kwargs) (Default is astroML.periodogram.lomb_scargle)
 LS_kwargsdict
dictionary of keyword arguments to pass to LS_func in addition to (t, y, dy, omega)
 initial_guessfloat
the initial guess of the best period
 limit_fractionsarray_like
the list of fractions to use when zooming in on peak possibilities. On the i^th iteration, with f_i = limit_fractions[i], the range probed around each candidate will be (candidate * f_i, candidate / f_i).
 n_evalinteger or list
The number of point to evaluate in the range on each iteration. If n_eval is a list, it should have the same length as limit_fractions.
 n_retryinteger or list
Number of top points to search on each iteration. If n_retry is a list, it should have the same length as limit_fractions.
 n_saveinteger or list
Number of evaluations to save on each iteration. If n_save is a list, it should have the same length as limit_fractions.