This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

11.3.1.3. astroML.linear_model.BasisFunctionRegression

class astroML.linear_model.BasisFunctionRegression(basis_func='gaussian', fit_intercept=True, **kwargs)

Basis Function with errors in y

Parameters :

fit_intercept : bool (optional)

if True (default) then fit the intercept of the data

basis_func : str or function

specify the basis function to use. This should take an input matrix of size (n_samples, n_features), along with optional parameters, and return a matrix of size (n_samples, n_bases).

**kwargs : :

extra arguments and keyword arguments are passed to the basis function

Methods

fit(X, y[, dy])
predict(X)
__init__(basis_func='gaussian', fit_intercept=True, **kwargs)