This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

11.5.1.2. astroML.time_series.lomb_scargle_bootstrap

astroML.time_series.lomb_scargle_bootstrap(t, y, dy, omega, generalized=True, subtract_mean=True, N_bootstraps=100, random_state=None)

Use a bootstrap analysis to compute Lomb-Scargle significance

Parameters :

The first set of parameters are passed to the lomb_scargle algorithm :

t : array_like

sequence of times

y : array_like

sequence of observations

dy : array_like

sequence of observational errors

omega : array_like

frequencies at which to evaluate p(omega)

generalized : bool

if True (default) use generalized lomb-scargle method otherwise, use classic lomb-scargle.

subtract_mean : bool

if True (default) subtract the sample mean from the data before computing the periodogram. Only referenced if generalized is False

Remaining parameters control the bootstrap :

N_bootstraps : int

number of bootstraps

random_state : None, int, or RandomState object

random seed, or random number generator

Returns :

D : ndarray

distribution of the height of the highest peak