This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

SDSS ImagingΒΆ

This example shows how to load the magnitude data from the SDSS imaging catalog, and plot colors and magnitudes of the stars and galaxies.

../../_images/plot_sdss_imaging_1.png
# Author: Jake VanderPlas <vanderplas@astro.washington.edu>
# License: BSD
#   The figure is an example from astroML: see http://astroML.github.com
import numpy as np
from matplotlib import pyplot as plt
from astroML.datasets import fetch_imaging_sample

#------------------------------------------------------------
# Get the star/galaxy data
data = fetch_imaging_sample()

objtype = data['type']

stars = data[objtype == 6][:5000]
galaxies = data[objtype == 3][:5000]

#------------------------------------------------------------
# Plot the stars and galaxies
plot_kwargs = dict(color='k', linestyle='none', marker='.', markersize=1)

fig = plt.figure()

ax1 = fig.add_subplot(221)
ax1.plot(galaxies['gRaw'] - galaxies['rRaw'],
         galaxies['rRaw'],
         **plot_kwargs)

ax2 = fig.add_subplot(223, sharex=ax1)
ax2.plot(galaxies['gRaw'] - galaxies['rRaw'],
         galaxies['rRaw'] - galaxies['iRaw'],
         **plot_kwargs)

ax3 = fig.add_subplot(222, sharey=ax1)
ax3.plot(stars['gRaw'] - stars['rRaw'],
         stars['rRaw'],
         **plot_kwargs)

ax4 = fig.add_subplot(224, sharex=ax3, sharey=ax2)
ax4.plot(stars['gRaw'] - stars['rRaw'],
         stars['rRaw'] - stars['iRaw'],
         **plot_kwargs)

# set labels and titles
ax1.set_ylabel('$r$')
ax2.set_ylabel('$r-i$')
ax2.set_xlabel('$g-r$')
ax4.set_xlabel('$g-r$')
ax1.set_title('Galaxies')
ax3.set_title('Stars')

# set axis limits
ax2.set_xlim(-0.5, 3)
ax3.set_ylim(22.5, 14)
ax4.set_xlim(-0.5, 3)
ax4.set_ylim(-1, 2)

# adjust tick spacings on all axes
for ax in (ax1, ax2, ax3, ax4):
    ax.xaxis.set_major_locator(plt.MultipleLocator(1))
    ax.yaxis.set_major_locator(plt.MultipleLocator(1))

plt.show()