This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Cross Validation Examples: Part 4ΒΆ

Figure 8.15

The learning curves for the data given by eq. 8.75, with d = 2 and d = 3. Both models have high variance for a few data points, visible in the spread between training and validation error. As the number of points increases, it is clear that d = 2 is a high-bias model which cannot be improved simply by adding training points.

../../_images_1ed/fig_cross_val_D_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import ticker
from matplotlib.patches import FancyArrow

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


#------------------------------------------------------------
# Define our functional form
def func(x, dy=0.1):
    return np.random.normal(np.sin(x) * x, dy)

#------------------------------------------------------------
# select the (noisy) data
np.random.seed(0)
x = np.linspace(0, 3, 22)[1:-1]
dy = 0.1
y = func(x, dy)

#------------------------------------------------------------
# Select the cross-validation points
np.random.seed(1)
x_cv = 3 * np.random.random(20)
y_cv = func(x_cv)

x_fit = np.linspace(0, 3, 1000)

#------------------------------------------------------------
# Fourth figure: plot errors as a function of training set size
np.random.seed(0)
x = 3 * np.random.random(100)
y = func(x)

np.random.seed(1)
x_cv = 3 * np.random.random(100)
y_cv = func(x_cv)

Nrange = np.arange(10, 101, 2)

fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(left=0.15, top=0.95)

for subplot, d in zip([211, 212], [2, 3]):
    ax = fig.add_subplot(subplot)
    training_err = np.zeros(Nrange.shape)
    crossval_err = np.zeros(Nrange.shape)

    for j, N in enumerate(Nrange):
        p = np.polyfit(x[:N], y[:N], d)
        training_err[j] = np.sqrt(np.sum((np.polyval(p, x[:N])
                                          - y[:N]) ** 2) / len(y))
        crossval_err[j] = np.sqrt(np.sum((np.polyval(p, x_cv)
                                          - y_cv) ** 2) / len(y_cv))

    ax.plot(Nrange, crossval_err, '--k', label='cross-validation')
    ax.plot(Nrange, training_err, '-k', label='training')
    ax.plot(Nrange, 0.1 * np.ones(Nrange.shape), ':k')
    ax.legend(loc=1)
    ax.text(0.03, 0.94, "d = %i" % d, transform=ax.transAxes,
            ha='left', va='top', bbox=dict(ec='k', fc='w', pad=10))

    ax.set_ylim(0, 0.4)

    ax.set_xlabel('Number of training points')
    ax.set_ylabel('rms error')

plt.show()