This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Joint and Conditional ProbabilitiesΒΆ

Figure 3.2.

An example of a two-dimensional probability distribution. The color-coded panel shows p(x, y). The two panels to the left and below show marginal distributions in x and y (see eq. 3.8). The three panels to the right show the conditional probability distributions p(x|y) (see eq. 3.7) for three different values of y (as marked in the left panel).

../../_images_1ed/fig_conditional_probability_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import NullFormatter, NullLocator, MultipleLocator

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

def banana_distribution(N=10000):
    """This generates random points in a banana shape"""
    # create a truncated normal distribution
    theta = np.random.normal(0, np.pi / 8, 10000)
    theta[theta >= np.pi / 4] /= 2
    theta[theta <= -np.pi / 4] /= 2
    # define the curve parametrically
    r = np.sqrt(1. / abs(np.cos(theta) ** 2 - np.sin(theta) ** 2))
    r += np.random.normal(0, 0.08, size=10000)
    x = r * np.cos(theta + np.pi / 4)
    y = r * np.sin(theta + np.pi / 4)
    return (x, y)


#------------------------------------------------------------
# Generate the data and compute the normalized 2D histogram
np.random.seed(1)
x, y = banana_distribution(10000)

Ngrid = 41
grid = np.linspace(0, 2, Ngrid + 1)

H, xbins, ybins = np.histogram2d(x, y, grid)
H /= np.sum(H)

#------------------------------------------------------------
# plot the result
fig = plt.figure(figsize=(5, 2.5))

# define axes
ax_Pxy = plt.axes((0.2, 0.34, 0.27, 0.52))
ax_Px = plt.axes((0.2, 0.14, 0.27, 0.2))
ax_Py = plt.axes((0.1, 0.34, 0.1, 0.52))
ax_cb = plt.axes((0.48, 0.34, 0.01, 0.52))
ax_Px_y = [plt.axes((0.65, 0.62, 0.32, 0.23)),
           plt.axes((0.65, 0.38, 0.32, 0.23)),
           plt.axes((0.65, 0.14, 0.32, 0.23))]

# set axis label formatters
ax_Px_y[0].xaxis.set_major_formatter(NullFormatter())
ax_Px_y[1].xaxis.set_major_formatter(NullFormatter())

ax_Pxy.xaxis.set_major_formatter(NullFormatter())
ax_Pxy.yaxis.set_major_formatter(NullFormatter())

ax_Px.yaxis.set_major_formatter(NullFormatter())
ax_Py.xaxis.set_major_formatter(NullFormatter())

# draw the joint probability
plt.axes(ax_Pxy)
H *= 1000
plt.imshow(H, interpolation='nearest', origin='lower', aspect='auto',
           extent=[0, 2, 0, 2], cmap=plt.cm.binary)

cb = plt.colorbar(cax=ax_cb)
cb.set_label('$p(x, y)$')
plt.text(0, 1.02, r'$\times 10^{-3}$',
         transform=ax_cb.transAxes)

# draw p(x) distribution
ax_Px.plot(xbins[1:], H.sum(0), '-k', drawstyle='steps')

# draw p(y) distribution
ax_Py.plot(H.sum(1), ybins[1:], '-k', drawstyle='steps')

# define axis limits
ax_Pxy.set_xlim(0, 2)
ax_Pxy.set_ylim(0, 2)
ax_Px.set_xlim(0, 2)
ax_Py.set_ylim(0, 2)

# label axes
ax_Pxy.set_xlabel('$x$')
ax_Pxy.set_ylabel('$y$')
ax_Px.set_xlabel('$x$')
ax_Px.set_ylabel('$p(x)$')
ax_Px.yaxis.set_label_position('right')
ax_Py.set_ylabel('$y$')
ax_Py.set_xlabel('$p(y)$')
ax_Py.xaxis.set_label_position('top')


# draw marginal probabilities
iy = [3 * Ngrid / 4, Ngrid / 2, Ngrid / 4]
colors = 'rgc'
axis = ax_Pxy.axis()
for i in range(3):
    # overplot range on joint probability
    ax_Pxy.plot([0, 2, 2, 0],
                [ybins[iy[i] + 1], ybins[iy[i] + 1],
                 ybins[iy[i]], ybins[iy[i]]], c=colors[i], lw=1)
    Px_y = H[iy[i]] / H[iy[i]].sum()
    ax_Px_y[i].plot(xbins[1:], Px_y, drawstyle='steps', c=colors[i])
    ax_Px_y[i].yaxis.set_major_formatter(NullFormatter())
    ax_Px_y[i].set_ylabel('$p(x | %.1f)$' % ybins[iy[i]])
ax_Pxy.axis(axis)

ax_Px_y[2].set_xlabel('$x$')

ax_Pxy.set_title('Joint Probability')
ax_Px_y[0].set_title('Conditional Probability')

plt.show()