This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Great Wall KDEΒΆ

Figure 6.3

Kernel density estimation for galaxies within the SDSS “Great Wall.” The top-left panel shows points that are galaxies, projected by their spatial locations (right ascension and distance determined from redshift measurement) onto the equatorial plane (declination ~ 0 degrees). The remaining panels show estimates of the density of these points using kernel density estimation with a Gaussian kernel (upper right), a top-hat kernel (lower left), and an exponential kernel (lower right). Compare also to figure 6.4.

../../_images/fig_great_wall_KDE_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import LogNorm

from scipy.spatial import cKDTree
from scipy.stats import gaussian_kde

from astroML.datasets import fetch_great_wall

# Scikit-learn 0.14 added sklearn.neighbors.KernelDensity, which is a very
# fast kernel density estimator based on a KD Tree.  We'll use this if
# available (and raise a warning if it isn't).
try:
    from sklearn.neighbors import KernelDensity
    use_sklearn_KDE = True
except:
    import warnings
    warnings.warn("KDE will be removed in astroML version 0.3.  Please "
                  "upgrade to scikit-learn 0.14+ and use "
                  "sklearn.neighbors.KernelDensity.", DeprecationWarning)
    from astroML.density_estimation import KDE
    use_sklearn_KDE = False

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Fetch the great wall data
X = fetch_great_wall()

#------------------------------------------------------------
# Create  the grid on which to evaluate the results
Nx = 50
Ny = 125
xmin, xmax = (-375, -175)
ymin, ymax = (-300, 200)

#------------------------------------------------------------
# Evaluate for several models
Xgrid = np.vstack(map(np.ravel, np.meshgrid(np.linspace(xmin, xmax, Nx),
                                            np.linspace(ymin, ymax, Ny)))).T

kernels = ['gaussian', 'tophat', 'exponential']
dens = []

if use_sklearn_KDE:
    kde1 = KernelDensity(5, kernel='gaussian')
    log_dens1 = kde1.fit(X).score_samples(Xgrid)
    dens1 = X.shape[0] * np.exp(log_dens1).reshape((Ny, Nx))

    kde2 = KernelDensity(5, kernel='tophat')
    log_dens2 = kde2.fit(X).score_samples(Xgrid)
    dens2 = X.shape[0] * np.exp(log_dens2).reshape((Ny, Nx))

    kde3 = KernelDensity(5, kernel='exponential')
    log_dens3 = kde3.fit(X).score_samples(Xgrid)
    dens3 = X.shape[0] * np.exp(log_dens3).reshape((Ny, Nx))

else:
    kde1 = KDE(metric='gaussian', h=5)
    dens1 = kde1.fit(X).eval(Xgrid).reshape((Ny, Nx))

    kde2 = KDE(metric='tophat', h=5)
    dens2 = kde2.fit(X).eval(Xgrid).reshape((Ny, Nx))

    kde3 = KDE(metric='exponential', h=5)
    dens3 = kde3.fit(X).eval(Xgrid).reshape((Ny, Nx))

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 2.2))
fig.subplots_adjust(left=0.12, right=0.95, bottom=0.2, top=0.9,
                    hspace=0.01, wspace=0.01)

# First plot: scatter the points
ax1 = plt.subplot(221, aspect='equal')
ax1.scatter(X[:, 1], X[:, 0], s=1, lw=0, c='k')
ax1.text(0.95, 0.9, "input", ha='right', va='top',
         transform=ax1.transAxes,
         bbox=dict(boxstyle='round', ec='k', fc='w'))

# Second plot: gaussian kernel
ax2 = plt.subplot(222, aspect='equal')
ax2.imshow(dens1.T, origin='lower', norm=LogNorm(),
           extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary)
ax2.text(0.95, 0.9, "Gaussian $(h=5)$", ha='right', va='top',
         transform=ax2.transAxes,
         bbox=dict(boxstyle='round', ec='k', fc='w'))

# Third plot: top-hat kernel
ax3 = plt.subplot(223, aspect='equal')
ax3.imshow(dens2.T, origin='lower', norm=LogNorm(),
           extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary)
ax3.text(0.95, 0.9, "top-hat $(h=5)$", ha='right', va='top',
         transform=ax3.transAxes,
         bbox=dict(boxstyle='round', ec='k', fc='w'))
ax3.images[0].set_clim(0.01, 0.8)

# Fourth plot: exponential kernel
ax4 = plt.subplot(224, aspect='equal')
ax4.imshow(dens3.T, origin='lower', norm=LogNorm(),
           extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary)
ax4.text(0.95, 0.9, "exponential $(h=5)$", ha='right', va='top',
         transform=ax4.transAxes,
         bbox=dict(boxstyle='round', ec='k', fc='w'))

for ax in [ax1, ax2, ax3, ax4]:
    ax.set_xlim(ymin, ymax - 0.01)
    ax.set_ylim(xmin, xmax)

for ax in [ax1, ax2]:
    ax.xaxis.set_major_formatter(plt.NullFormatter())

for ax in [ax3, ax4]:
    ax.set_xlabel('$y$ (Mpc)')

for ax in [ax2, ax4]:
    ax.yaxis.set_major_formatter(plt.NullFormatter())

for ax in [ax1, ax3]:
    ax.set_ylabel('$x$ (Mpc)')

plt.show()