This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Luminosity function code on toy dataΒΆ

Figure 4.9.

An example of using Lynden-Bell’s C- method to estimate a bivariate distribution from a truncated sample. The lines in the left panel show the true one-dimensional distributions of x and y (truncated Gaussian distributions). The two-dimensional distribution is assumed to be separable; see eq. 4.85. A realization of the distribution is shown in the right panel, with a truncation given by the solid line. The points in the left panel are computed from the truncated data set using the C- method, with error bars from 20 bootstrap resamples.

../../_images/fig_lyndenbell_toy_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy import stats

from astroML.lumfunc import bootstrap_Cminus

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Define and sample our distributions
N = 10000
np.random.seed(42)

# Define the input distributions for x and y
x_pdf = stats.truncnorm(-2, 1, 0.66666, 0.33333)
y_pdf = stats.truncnorm(-1, 2, 0.33333, 0.33333)

x = x_pdf.rvs(N)
y = y_pdf.rvs(N)

# define the truncation: we'll design this to be symmetric
# so that xmax(y) = max_func(y)
# and ymax(x) = max_func(x)
max_func = lambda t: 1. / (0.5 + t) - 0.5

xmax = max_func(y)
xmax[xmax > 1] = 1  # cutoff at x=1

ymax = max_func(x)
ymax[ymax > 1] = 1  # cutoff at y=1

# truncate the data
flag = (x < xmax) & (y < ymax)
x = x[flag]
y = y[flag]
xmax = xmax[flag]
ymax = ymax[flag]

x_fit = np.linspace(0, 1, 21)
y_fit = np.linspace(0, 1, 21)

#------------------------------------------------------------
# compute the Cminus distributions (with bootstrap)
x_dist, dx_dist, y_dist, dy_dist = bootstrap_Cminus(x, y, xmax, ymax,
                                                    x_fit, y_fit,
                                                    Nbootstraps=20,
                                                    normalize=True)

x_mid = 0.5 * (x_fit[1:] + x_fit[:-1])
y_mid = 0.5 * (y_fit[1:] + y_fit[:-1])

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 2))
fig.subplots_adjust(bottom=0.2, top=0.95,
                    left=0.1, right=0.92, wspace=0.25)

# First subplot is the true & inferred 1D distributions
ax = fig.add_subplot(121)
ax.plot(x_mid, x_pdf.pdf(x_mid), '-k', label='$p(x)$')
ax.plot(y_mid, y_pdf.pdf(y_mid), '--k', label='$p(y)$')
ax.legend(loc='lower center')

ax.errorbar(x_mid, x_dist, dx_dist, fmt='ok', ecolor='k', lw=1, ms=4)
ax.errorbar(y_mid, y_dist, dy_dist, fmt='^k', ecolor='k', lw=1, ms=4)

ax.set_ylim(0, 1.8)
ax.set_xlim(0, 1)
ax.set_xlabel('$x$, $y$')
ax.set_ylabel('normalized distribution')

# Second subplot is the "observed" 2D distribution
ax = fig.add_subplot(122)
H, xb, yb = np.histogram2d(x, y, bins=np.linspace(0, 1, 41))
plt.imshow(H.T, origin='lower', interpolation='nearest',
           extent=[0, 1, 0, 1], cmap=plt.cm.binary)
cb = plt.colorbar()

x_limit = np.linspace(-0.1, 1.1, 1000)
y_limit = max_func(x_limit)
x_limit[y_limit > 1] = 0
y_limit[x_limit > 1] = 0
ax.plot(x_limit, y_limit, '-k')

ax.set_xlim(0, 1.1)
ax.set_ylim(0, 1.1)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
cb.set_label('counts per pixel')
ax.text(0.93, 0.93, '%i points' % len(x), ha='right', va='top',
        transform=ax.transAxes)

plt.show()