Logo

  • Home
  • User Guide
  • Book Figures
    • 2nd edition
    • 1st edition
  • Example Plots
  • Notebooks
Previous
Matched Filte... Matched Filter Burst Search
 
Up
Chapter 10: T... Chapter 10: Time Series Analysis

This documentation is for astroML version 0.4

This page

  • Matched Filter Chirp Search

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Matched Filter Chirp SearchΒΆ

Figure 10.26

A matched filter search for a chirp signal in time series data. A simulated data set generated from a model of the form y = b0+Asin[omega t + beta t^2], with homoscedastic Gaussian errors with sigma = 2, is shown in the top-right panel. The posterior pdf for the four model parameters is determined using MCMC and shown in the other panels.

../../_images/fig_matchedfilt_chirp_1.png

Code output:


Python source code:

# Author: Jake VanderPlas (adapted to PyMC3 by Brigitta Sipocz)
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

import pymc3 as pm

from astroML.plotting.mcmc import plot_mcmc

# ----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
if "setup_text_plots" not in globals():
    from astroML.plotting import setup_text_plots

setup_text_plots(fontsize=8, usetex=True)


# ----------------------------------------------------------------------
# Set up toy dataset
def chirp(t, b0, beta, A, omega):
    return b0 + A * np.sin(omega * t + beta * t * t)


np.random.seed(0)

N = 100
b0_true = 10
A_true = 5
beta_true = 0.01
omega_true = 0.1
sigma = 2.0

t = 100 * np.random.random(N)

y_true = chirp(t, b0_true, beta_true, A_true, omega_true)
y_obs = np.random.normal(y_true, sigma)


# ----------------------------------------------------------------------
# Set up MCMC sampling
with pm.Model():
    b0 = pm.Uniform('b0', 0, 50, testval=50 * np.random.random())
    A = pm.Uniform('A', 0, 50, testval=50 * np.random.random())
    log_beta = pm.Uniform('log_beta', -10, 10, testval=-4.6)
    log_omega = pm.Uniform('log_omega', -10, 10, testval=-2.3)

    y = pm.Normal('y', mu=chirp(t, b0, np.exp(log_beta), A, np.exp(log_omega)),
                  sd=sigma, observed=y_obs)

    # Choose the Metropolis-Hastings step rather than rely on the default
    step = pm.Metropolis()
    traces = pm.sample(draws=5000, tune=2000, step=step)


# ----------------------------------------------------------------------
# Use the summary() function to provide statistics for each variable
mean_vals = pm.summary(traces)['mean']
mean_vals['omega'] = np.exp(mean_vals.pop('log_omega'))
mean_vals['beta'] = np.exp(mean_vals.pop('log_beta'))

labels = ['$b_0$', '$A$', r'$\omega$', r'$\beta$']
limits = [(9.5, 11.3), (3.6, 6.4), (0.065, 0.115), (0.00975, 0.01045)]
true = [b0_true, A_true, omega_true, beta_true]

fig = plt.figure(figsize=(5, 5))
ax = plt.axes([0.5, 0.7, 0.45, 0.25])

t_fit = np.linspace(0, 100, 1001)
y_fit = chirp(t_fit, **mean_vals)


# ----------------------------------------------------------------------
# Plot multiple panels with the traces
plt.scatter(t, y_obs, s=9, lw=0, c='k')
plt.plot(t_fit, y_fit, '-k')
plt.xlim(0, 100)
plt.xlabel('$t$')
plt.ylabel(r'$h_{\rm obs}$')

plot_mcmc([traces[ii] for ii in ['b0', 'A']]
          + [np.exp(traces['log_omega']), np.exp(traces['log_beta'])],
          labels=labels, limits=limits, true_values=true, fig=fig,
          bins=30, bounds=[0.12, 0.08, 0.95, 0.91], colors='k')
plt.show()

[download source: fig_matchedfilt_chirp.py]

This documentation is relative to astroML version 0.4
© 2012-2019, Jake Vanderplas & AstroML Developers. Created using Sphinx 2.1.2. Design by Web y Limonada. Show this page source