Source code for astroML.filters

import numpy as np
from scipy import optimize, fftpack, signal

from astroML.utils.decorators import deprecated
from astroML.utils.exceptions import AstroMLDeprecationWarning


# Note: there is a scipy PR to include an improved SG filter within the
# scipy.signal submodule.  It should replace this when it's finished.
# see http://github.com/scipy/scipy/pull/304
[docs]@deprecated('1.0', alternative='scipy.signal.savgol_filter', warning_type=AstroMLDeprecationWarning) def savitzky_golay(y, window_size, order, deriv=0, use_fft=True): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter This implementation is based on [1]_. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techhniques. Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) use_fft : bool if True (default) then convolue using FFT for speed Returns ------- y_smooth : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- >>> t = np.linspace(-4, 4, 500) >>> y = np.exp(-t ** 2) >>> y_smooth = savitzky_golay(y, window_size=31, order=4) References ---------- .. [1] http://www.scipy.org/Cookbook/SavitzkyGolay .. [2] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [3] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688 """ try: window_size = np.abs(int(window_size)) order = np.abs(int(order)) except ValueError: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order + 1) half_window = (window_size - 1) // 2 # precompute coefficients b = np.array([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b)[deriv] # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) if use_fft: return signal.fftconvolve(y, m, mode='valid') else: return np.convolve(y, m, mode='valid')
[docs]def wiener_filter(t, h, signal='gaussian', noise='flat', return_PSDs=False, signal_params=None, noise_params=None): """Compute a Wiener-filtered time-series Parameters ---------- t : array_like evenly-sampled time series, length N h : array_like observations at each t signal : str (optional) currently only 'gaussian' is supported noise : str (optional) currently only 'flat' is supported return_PSDs : bool (optional) if True, then return (PSD, P_S, P_N) signal_guess : tuple (optional) A starting guess at the parameters for the signal. If not specified, a suitable guess will be estimated from the data itself. (see Notes below) noise_guess : tuple (optional) A starting guess at the parameters for the noise. If not specified, a suitable guess will be estimated from the data itself. (see Notes below) Returns ------- h_smooth : ndarray a smoothed version of h, length N Notes ----- The Wiener filter operates by fitting a functional form to the PSD:: PSD = P_S + P_N The resulting frequency-space filter is given by:: Phi = P_S / (P_S + P_N) This entire operation is equivalent to a kernel smoothing by a kernel whose Fourier transform is Phi. Choosing Signal/Noise Parameters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ the arguments ``signal_guess`` and ``noise_guess`` specify the initial guess for the characteristics of signal and noise used in the minimization. They are generally expected to be tuples, and the meaning varies depending on the form of signal and noise used. For ``gaussian``, the params are (amplitude, width). For ``flat``, the params are (amplitude,). See Also -------- scipy.signal.wiener : a static (non-adaptive) wiener filter """ # Validate signal if signal != 'gaussian': raise ValueError("only signal='gaussian' is supported") if signal_params is not None and len(signal_params) != 2: raise ValueError("signal_params should be length 2") # Validate noise if noise != 'flat': raise ValueError("only noise='flat' is supported") if noise_params is not None and len(noise_params) != 1: raise ValueError("noise_params should be length 1") # Validate t and hd t = np.asarray(t) h = np.asarray(h) if (t.ndim != 1) or (t.shape != h.shape): raise ValueError('t and h must be equal-length 1-dimensional arrays') # compute the PSD of the input N = len(t) Df = 1. / N / (t[1] - t[0]) f = fftpack.ifftshift(Df * (np.arange(N) - N / 2)) H = fftpack.fft(h) PSD = abs(H) ** 2 # fit signal/noise params if necessary if signal_params is None: amp_guess = np.max(PSD[1:]) width_guess = np.min(np.abs(f[PSD < np.mean(PSD[1:])])) signal_params = (amp_guess, width_guess) if noise_params is None: noise_params = (np.mean(PSD[1:]),) # Set up the Wiener filter: # fit a model to the PSD: sum of signal form and noise form def signal(x, A, width): width = abs(width) + 1E-99 # prevent divide-by-zero errors return A * np.exp(-0.5 * (x / width) ** 2) def noise(x, n): return n * np.ones(x.shape) # use [1:] here to remove the zero-frequency term: we don't want to # fit to this for data with an offset. def min_func(v): return np.sum((PSD[1:] - signal(f[1:], v[0], v[1]) - noise(f[1:], v[2])) ** 2) v0 = tuple(signal_params) + tuple(noise_params) v = optimize.minimize(min_func, v0, method='Nelder-Mead')['x'] P_S = signal(f, v[0], v[1]) P_N = noise(f, v[2]) Phi = P_S / (P_S + P_N) Phi[0] = 1 # correct for DC offset # Use Phi to filter and smooth the values h_smooth = fftpack.ifft(Phi * H) if not np.iscomplexobj(h): h_smooth = h_smooth.real if return_PSDs: return h_smooth, PSD, P_S, P_N, Phi else: return h_smooth
[docs]def min_component_filter(x, y, feature_mask, p=1, fcut=None, Q=None): """Minimum component filtering Minimum component filtering is useful for determining the background component of a signal in the presence of spikes Parameters ---------- x : array_like 1D array of evenly spaced x values y : array_like 1D array of y values corresponding to x feature_mask : array_like 1D mask array giving the locations of features in the data which should be ignored for smoothing p : integer (optional) polynomial degree to be used for the fit (default = 1) fcut : float (optional) the cutoff frequency for the low-pass filter. Default value is f_nyq / sqrt(N) Q : float (optional) the strength of the low-pass filter. Larger Q means a steeper cutoff default value is 0.1 * fcut Returns ------- y_filtered : ndarray The filtered version of y. Notes ----- This code follows the procedure explained in the book "Practical Statistics for Astronomers" by Wall & Jenkins book, as well as in Wall, J, A&A 122:371, 1997 """ x = np.asarray(x, dtype=float) y = np.asarray(y, dtype=float) feature_mask = np.asarray(feature_mask, dtype=bool) if ((x.ndim != 1) or (x.shape != y.shape) or (y.shape != feature_mask.shape)): raise ValueError('x, y, and feature_mask must be 1 dimensional ' 'with matching lengths') if fcut is None: f_nyquist = 1. / (x[1] - x[0]) fcut = f_nyquist / np.sqrt(len(x)) if Q is None: Q = 0.1 * fcut # compute polynomial features XX = x[:, None] ** np.arange(p + 1) # compute least-squares fit to non-masked data beta = np.linalg.lstsq(XX[~feature_mask], y[~feature_mask], rcond=None)[0] # subtract polynomial fit and mask the data y_mask = y - np.dot(XX, beta) y_mask[feature_mask] = 0 # get Fourier transforms of arrays yFT_mask = fftpack.fft(y_mask) # compute (shifted) frequency array for filter N = len(x) f = fftpack.ifftshift((np.arange(N) - N / 2.) * 1. / N / (x[1] - x[0])) # construct low-pass filter filt = np.exp(- (Q * (abs(f) - fcut) / fcut) ** 2) filt[abs(f) < fcut] = 1 # reconstruct filtered signal y_filtered = fftpack.ifft(yFT_mask * filt).real + np.dot(XX, beta) return y_filtered